Anti-chaperone βA3/A1102-117 peptide interacting sites in human αB-crystallin

نویسندگان

  • Guruprasad Rao
  • Puttur Santhoshkumar
  • K. Krishna Sharma
چکیده

PURPOSE Our previous work identified 23 low molecular weight (<3.5 kDa) crystallin peptides in the urea-soluble fractions of normal young, normal aged, and aged cataract human lenses. We found that one of these crystallin fragments, betaA3/A1(102-117) peptide (SDAYHIERLMSFRPIC), that are present in aged and cataract lens, increased the scattering of light by beta- and gamma-crystallins and alcohol dehydrogenase (ADH) and also reduced the chaperone-like activity of alphaB-crystallin. The present study was performed to identify the interacting sites of the betaA3/A1(102-117) peptide in alphaB-crystallin. METHODS betaA3/A1(102-117) peptide was first derivatized with sulfo-succinimidyl-2-[6-(biotinamido)-2-{p-azidobenzamido}-hexanoamido] ethyl-1-3 dithio propionate (sulfo-SBED), a photoactivable, heterotrifunctional biotin-containing cross-linker. The biotin-derivatized peptide was then incubated with alphaB-crystallin at 37 degrees C for 2 h to allow complex formation followed by photolysis to facilitate the transfer of the biotin label from the peptide to alphaB-crystallin. Label transfer was confirmed by western blot, and the labeled alphaB-crystallin was digested with trypsin. Tryptic peptides from alphaB-crystallin carrying the biotin label were purified by avidin affinity chromatography, and betaA3/A1(102-117) peptide interacting sites in alphaB-crystallin were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and nanospray quadrupole time-of-flight mass spectrometry (QqTOF MS/MS). RESULTS We found that the betaA3/A1(102-117) peptide interacted with alphaB-crystallin regions (70)LEKDR(74), (83)HFSPEELKVK(92), (91)VKVLGDVIEVHGK(103), (93)VLGDVIEVHGKHEER(107), and (121)KYR(123), which are part of the alpha-crystallin domain, and were previously shown to be part of the functional chaperone site in alphaB-crystallin. The betaA3/A1(102-117) peptide also interacted with regions at the COOH-terminal extension of alphaB-crystallin, (150)KQVSGPER(157), (164)EEKPAVTAAPK(174), and (164)EEKPAVTAAPKK(175). When two of the hydrophobic residues of betaA3/A1(102-117) peptide were replaced with hydrophilic residues, the resulting substituted peptide, SDADHGERLMSFRPIC, did not show the anti-chaperone property. CONCLUSIONS This study confirmed the interactions between a low molecular weight peptide derived from betaA3/A1-crystallin found in aged and cataract lenses and alphaB-crystallin. The binding of betaA3/A1(102-117) peptide to the chaperone site and the COOH-terminal extension of alphaB-crystallin may explain its anti-chaperone property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins

Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystalli...

متن کامل

Correction: In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract forma...

متن کامل

Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts.

α-Crystallin is a member of the small heat-shock protein (sHSP) family and consists of two subunits, αA and αB. Both αA- and αB-crystallin act as chaperones and anti-apoptotic proteins. Previous studies have identified the peptide (70)KFVIFLDVKHFSPEDLTVK(88) in αA-crystallin and the peptide (73)DRFSVNLDVKHFSPEELKVK(92) in αB-crystallin as mini-chaperones. In the human lens, lysine 70 (Lys(70)) ...

متن کامل

Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin.

The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of c...

متن کامل

Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina

Misfolded protein aggregation, including cataract, cause a significant amount of blindness worldwide. α-Crystallin is reported to bind misfolded proteins and prevent their aggregation. We hypothesize that supplementing retina and lens with α-crystallin may help to delay disease onset. The purpose of this study was to determine if αB-crystallin subunits containing a cell penetration peptide (gC-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Vision

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008